A Hydrogeomorphic Lake Classification System for Lake Assessment

Outline

- 1) Project Overview
- 2) Grouping Lakes: Statistical Comparison of Regionalizations
- 3) Detecting Trends: Quantifying Variance Components

Overview: Project Workshop

November 2005

Overview: Project Goals

- 1) to develop a robust and widely applicable lake classification system
- 2) to build a lake assessment toolbox for state and national needs

- Lake reference conditions
- Bioassessment indicators
- Biological condition gradients
- Data gaps in sample designs

Project Overview

- 1. Assemble lake data from six states.
- 2. Statistically test alternative 'regionalization frames'.
- 3. Develop & test the *HydroGeomorphic Lake Classification framework (HGLC)*.
- 4. Build a lake assessment toolbox within the HGLC framework.

Hydrogeomorphic (HGM) effects on lakes:

a hierarchical approach.

Regional

(climate, geology)

HGM effects on lakes:
a hierarchical approach.

HGM effects on lakes:
a hierarchical approach.

Regional

(climate, geology)

Local: watershed (catchment area, land use)

Local:lake (lake size and depth)

Overview: Lake Assessment Toolbox

Grouping Lakes: Statistical Comparison of Regionalizations

REGIONALIZATION = a classification approach that groups together water bodies that lie within a similar geographical region (Seelbach *et al.* 2002)

- If regionalizations "capture" substantial variation among lakes, then they can be a useful component of assessment frameworks.
- Regionalization is the first step in developing the HGLC classification.

Regionalizations and Hierarchical Linear Models

among region variation

v. high

low

within region variation

v. low

high

Regionalizations: Statistical Analysis

$$Y_{ij} = Y_{00} + U_{0j} + r_{ij}$$

$$U_{0j} \sim N(0, \tau_{00})$$

$$r_{ij} \sim N(0, \sigma^{2})$$

$$\tau_{00}$$

% variation among regions =
$$\frac{\sigma_{00}}{\tau_{00}}$$
 + σ^2

Best regionalization framework criteria:

- 1) Largest % variation among regions
- 2) Smallest AIC_c (model fit statistic)

Lakes and Regionalizations

- 2314 lakes from 6 states (IA, WI, MI, OH, NH, ME)
 - Lake : ≥ 1 ha surface area and maximum depth ≥ 2 meters, includes (dammed and undammed) and reservoirs
 - Average lake area: 2812 ha (range: 13.3–533,666 ha)
 - Average maximum depth: 11.7 m (range: 2-96.3 m)
- 11 regionalization frameworks (regions, subregions)
 - Political boundaries: State, county
 - Terrestrially derived ecoregions: EPA regions (agglomerated Omernik), Omernik level 3 ecoregions, Bailey sections, Major Landscape Resource Areas
 - Aquatically derived ecoregions: Freshwater
 Ecoregions, Ecological Drainage Units, Hydrologic
 Landscape Regions, 6 digits hydrologic units, 8 digit
 hydrologic units

8 Water Quality Response Variables (n, average, range)

Total nutrients (ug/L):

- o TP (2314, 22, 1-920)
- o TN (1466, 686, 66-14,661)

Algae: Chlorophyll (2314, 10, 0.02-328 ug/L)

Water clarity: Secchi disk depth (2314, 3.6, 0.2-14.3 m)

Trophic status: PCA factor scores of TP, chl, & Secchi (2316)

Acid buffering capacity:

- o Alkalinity (1970, 45, -2-302 mg/L CaCO3)
- o Conductivity (1667, 124, 10-1313 uS/cm)

Water color:

Water color (1650, 24, 1–193 PtCo)

Results: Regionalization Matters

Cheruvelil et al. in prep.

Results: Which Regionalization Is Best?

Criteria 1) highest regional % variation

# regions:	6	370	18	4	29	33	8	45	17	<i>57</i>	231
	State	County	Omernik L3	EPA	Bailey Section	MLRA	FW Ecos	EDU	HLR	HU-6	HU-8
Phosphorus						X					
Nitrogen											X
Chlorophyll						X					
Secchi		X									
Trophic Status		X									
Alkalinity						X					
Conductivity											X
Color						X					

Terrestrial

Political

Aquatic

Results: Which Regionalization Is Best?

Criteria 2) Practicality: lowest AICC

# regions	: 6	370	18	4	29	33	8	45	17	57	231
	Stat e	County	Omernik L3	EPA	Bailey Section	MLRA	FW Ecos	EDU	HLR	HU-6	HU-8
Phosphorus						XX					
Nitrogen					X						X
Chlorophyll						XX					
Secchi	X	X									
Trophic Status		X				X					
Alkalinity						X				X	
Conductivity						X					X
Color	X	X				X					X

Terrestrial

Aquatic

Political

Regionalizations: Conclusions to Date

Regionalization matters.

- % variation among regions ranged 40-70% for most response variables.
- There is not a single best regionalization for all water chemistry measures.
- Land use differences may obscure the 'natural HGM signature'.

Regionalization to Variance Components

- Regionalization plays a role in assessing current status, and also in detecting trends over time.
- The ability of a monitoring program to detect trends over time is influenced by spatial variation.
- Several other sources of variation also play a role. Hence, it's important to consider the 'components of variance' when selecting response metrics and designing monitoring systems.

Components of Variance

Advocated for addressing status and trends of ecological data (Urquhart et al. 1998)

- Partition total variance into:
 - Site-to-site (spatial) variation
 - Coherent temporal variation (i.e., synchrony) affects all sites in a similar manner
 - Ephemeral temporal variation independent yearly variation at each site (site×year)
 - Random slope each site allowed to have own trend
 - Residual variation unexplained error

Components of Variance

Provides insight:

- What variables are good indicators of temporal trends?
 - e.g., variables with large coherent temporal variation are poor indicators
- What aspects of the monitoring design can be changed to increase the power to detect trends?
 - e.g., ephemeral temporal variation can be reduced by sampling more sites (lakes) per year

Variance Components: Analyses

Step 1: We used a weighted mixed model to estimate components of variance and determine if there was a trend over time in size at age for: 6 fish species, 2 age classes, and 2 states.

Step 2: We selected 2 situations with very different variance components and used simulation modeling to explore effects of variance components and monitoring design on the statistical power to detect a trend over time.

Variance Components: Results

Variance Components: Simulations

Power depends on trend magnitude: MI

Variance Components: Simulations

Power depends on trend magnitude, but is lower overall for WI age 4 walleye.

Variance Components: Simulations

Why is the power so low for WI?

Variance Components: Simulations

Coherent temporal variation reduces power in WI.

Variance Components: Conclusions to Date

- Partitioning of variance components will differ among states (to an unknown degree).
- Relatively small differences in coherent temporal variation have large implications for power to detect temporal trends.

Conclusions, Constraints, and Directions

- Variation captured by regionalizations varies among water chemistry metrics and frameworks.
- Current land-use patterns likely underlie MLRA's 'success.' Future analyses will focus on least disturbed lakes.
- Quantifying variance components for several lake metrics and across spatial scales will be important for assessing the statistical power of a national survey of lakes.
- Landscape and lake data compilation across states is never-ending, time consuming, and requires \$.

MSU EPA-NLAPP Project Participants

Iowa: John Downing (Iowa State University)

Maine: Katherine Webster, Peter Vaux, Kathleen Bell (University of Maine), Linda Bacon (ME-Dept. Environmental Protection)

Michigan: Patricia Soranno, Mary Bremigan, Kendra Spence Cheruvelil, Jan Stevenson, Howard Wandell, Ty Wagner, Sherry Martin (Michigan State University), Ralph Bednarz, Sarah Holden, Sylvia Heaton (MI-Dept.Environmental Quality), Kevin Wehrly (MI-Dept. Natural Resources), Amy Derosier (MI-Natural Features Inventory)

New Hampshire: Scott Ashley and Jodi Conner (NH-Dept. of Environmental Sciences)

Ohio: Bill Renwick, Mike Vanni, Maria Gonzalez (Miami University), Jeff DeShon, Robert Davic (OH EPA Surface Water)

Wisconsin: Paul Garrison, Nancy Nate, Tim Asplund, Jennifer Filbert (WI-Dept. Natural Resources)